The representation of time in modelling of sound change

Keynote lecture

Jonathan Harrington, Johanna Cronenberg, Pia Greca, Michele Gubian
Institute for Phonetics and Speech Processing, Ludwig Maximilians University of Munich, Germany

Outline

Synchronic phonetic variation both within and between speakers is typically time-varying. Compatibly, sound change can be considered to be the result of adjustments in how such time-varying information is processed [1, 2]. Here we seek to understand how these time-varying, synchronic and diachronic aspects of speech are connected by comparing two or more groups of speakers from the same speaking community that are at different stages of a sound change in progress.

The methodology for relating time-varying signals to diachronic change was based on functional principal components analysis (FPCA) which decomposes a data set of \(n \) time-varying signals into \(n \) vectors (one vector of \(K \) PC-scores per signal) that modulate a linear combination of \(K \) principal components. Any one of the original (raw) signals can be approximated by adding this signal-specific modulation of the principal components to the mean calculated across the entire data set [3, 4]. The relevance of FPCA to the present study is that the input signals, the mean for the data set, as well as the \(K \) principal components are all functions of time. A further benefit of this technique for phonetic analysis is that FPCA can be applied to multidimensional time-varying signals in order to derive e.g. the time-varying shapes that underlie the first two, or first three formants together.

In the present study, FPCA was used to investigate three different types of sound change. The first was concerned with the increasing tendency for a merger to take place in New Zealand English (NZE) falling diphthongs exemplified by the lexical set [5] SQUARE in the direction of NEAR (so that e.g. ear/air are more or less homophonous for younger NZE speakers [6-9]). The focus of the second was on vowel metaphony in southern varieties of Italian in the so-called Lausberg area in which the vowel of the stem is modified by a following suffix: thus, standard Italian /mɛʃe, mesi/ (engl. month, months), but metaphonic /mɛʃ(e), mɛʃi(e)/ [10-13]. The third was concerned with intervocalic /s/-stop clusters in Andalusian Spanish in words like /pasta/ (engl. pasta) in which for older speakers the /s/ is pre-aspirated but is becoming post-aspirated for younger speakers [14-17].

A comparison of the FPCA-parameterised speech data between two groups (older vs. younger in the case of NZE and Andalusian Spanish; from three different regions of

ExLing 2020: 11th International Conference of Experimental Linguistics, 12-14 October 2020, Athens, Greece
the Lausberg area in the case of Southern Italian) provided evidence for all of these very different types of sound change in progress.

Finally, we make some suggestions for explaining how sound change emerges from a model of human speech processing in which dynamic information of the type derived from FPCA is stored and updated in memory.

References