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Abstract 
Multi-domain learning allows for joint feature detection to promote the performance 
on a learning task. The shared feature space, however, has limited capacity and should 
include only the most discriminative task-independent features that are useful for all the 
tasks. To this end, we proposed a global-local task uncertainty measure to monitor the 
usefulness of features for all tasks, increasing their effectiveness and generalizability 
while disentangling them from task-specific features that are not helpful for other tasks. 
Besides, this measure can utilize unlabeled domain data, tapping the vast reserves of 
unlabeled data to have even better features. An experiment on a multi-domain text 
classification shows that the proposed method consistently improves the baseline’s 
performance and improves the knowledge transfer of learned features to unseen data. 
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Introduction 
There are numerous applications for text classification, ranging from document 
categorization to author identification and sentiment analysis. While different 
texts may include different vocabulary, grammar, writing styles, and 
collocations, there are some intrinsic commonalities and potential similarities 
among them that make multitask learning (MTL) a suitable tool to tackle this 
problem.  MTL exploits such commonalities and tries to learn a shared feature 
space that improves the accuracy and generalization of all text domains 
simultaneously. To do this, MTL shares some learned features from one task to 
another that might need it but has no dedicated data to learn it. It also focuses 
on learning only relevant features that can be useful for all tasks. It uses other 
tasks as a regularizer for one, that empowers the tasks to tackle noisy or high 
dimensional data. It also shifts the features toward generalization since the 
emergent features should be useful for other tasks and domains (Ruder, 2017). 
However, if a classifier only employs generic features, its performance on the 
target task would be suboptimal (Liu, Qui, & Huang, 2017). On the other hand, 
fine-tuning each task diminishes others’ performance or restricts the 
generalization of the shared features (Lee et al., 2017).  To this end, the idea of 
shared-private MTL has been proposed in which, along with the shared feature 
space, each task has its own private feature space that can learn task-specific 
features and boost the task performance (Liu et al., 2017).  



K. Meshgi, M. Sadat Mirzaei 

 

134 

However, some task-specific features still emerge in the shared feature space 
that is not generalizable (thus, not useful for all tasks), wasting the capacity of 
the shared space to learn more desired features (Ganin & Lempitsky, 2015). It 
is potentially redundant to the features emerging in the private space of some 
tasks. To maximally improve the generalization of the shared feature space, the 
task-specific and task-independent features should be separated (i.e., 
disentangled), and feature redundancy should be omitted. 

To this end, we propose the notion of global-local task uncertainty 
discrepancy, in which we monitor how private-only and shared-only features 
can classify a specific domain, measure the uncertainty of the labels given by 
each feature sets, compare them, and maximize the difference between the 
uncertainty of two classifiers (built by shared or private-only features) for each 
task. In another view, the MTL loss function is considering the label inaccuracy 
for each task and the amount of task uncertainty caused by shared features for 
each task (that can be explained with some other features emerging in private 
feature space). This will disentangle shared and private feature spaces, pull the 
useful features from private space to the shared, and expell the redundant ones. 

Disentangling features using uncertainty 
In a deep multitask network, several tasks k=1,…, K are jointly trained on their 
respective data Dk, to form a shared parameter space in which shared features fS 
emerges. If all tasks only use fS as the feature set, the setting is called fully-
shared MTL. However, fully-shared settings are not capable of capturing the 
complicated relationship between tasks, and therefore, the emergent features 
have suboptimal performance. To this end, private-shared architecture allocates 
a private feature space fP

(k) to each task k. In collaboration with shared features, 
private features capture more patterns emerging in each task, which promotes 
the performance of individual tasks. However, in this naïve form, there is no 
guarantee that the useful and generalizable features emerge in the shared space. 
Also, some features are better suited for one or a few tasks (task-specific 
features) that can emerge in shared feature space-wasting the capacity of this 
space, limiting the overall effectiveness of shared features and jeopardize the 
generalizability of these features to unseen tasks. Thus, the task-specific 
features should be forced to evolve only in the private space of tasks, while 
task-independent features should be encouraged to appear in shared space.  

We propose a global-local uncertainty measure to see if a feature is useful for 
all tasks, or only a few. Instead of directly using training or development errors 
that are suboptimal indicators for learning progress (Kendall, Gal, and Cipolla 
2018), we used task uncertainty to have a sense of how the MTL is affected by 
changing the shared feature space in a particular way. This change is typically a 
result of supervised training of task k, where the network parameters (including 
the corresponding private space and the shared space) are tuned to reduce the 
training loss of the task. Here, we calculate the uncertainty of each task using 
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only shared features (disabling private features) on its dev set, when a task 
changes the shared feature space. We accumulate these values to provide the 
global task uncertainty measure, Lgu. We also include the uncertainty of the 
current task (i.e., the task that is being trained) using both shared and private 
features as a local task uncertainty loss, Llu. These uncertainty measure are 
added to the task loss, Ltask, to provide the final loss for task k. 
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in which λ1 and λ2 are regularization coefficients, and Ltask is the sum of loss of 
each task. Note that instead of dev set, Lgu can be calculated using unlabeled 
data as uncertainty calculation doesn’t require label.  

Experiments and results 
To measure the effectiveness of the proposed uncertainty measure on feature 
disentanglement and on the performance of the classifier, we conduct two sets 
of experiments. In the first experiment (Table 1), we train our baseline text 
classifier on 16 different text domains and compare it with a single-task 
classifier and other MTL classifiers, and investigate the effect of proposed 
uncertainty (UPS-MTL) on the performance. We also used unlabeled data in 
UPS-MTL+ to demonstrate the power of including unlabeled data.  
 
Table 1.  The accuracy (%) of the model 
trained on 16 tasks, compared to its single 
task LSTM baseline and other MTL 
classifiers. (first, second, third) 

DOMAIN LSTM 
MT-
CNN 

FS-
MTL 

SP-
MTL 

ASP-
MTL 

UPS-
MTL 

UPS-
MTL+ 

BOOKS            79.5 84.5 82.5 81.2 84.0 86.3 86.8 
ELECTRONICS 80.5 83.2 85.7 84.7 86.8 88.4 88.9 
DVD              81.7 84.0 83.5 84.0 85.5 87.0 87.5 
KITCHEN          78.0 83.2 86.0 85.2 86.2 89.3 89.6 
APPAREL          83.2 83.7 84.5 86.5 87.0 87.8 88.1 
CAMERA           85.2 86.0 86.5 88.0 89.2 89.4 89.9 
HEALTH           84.5 87.2 88.0 87.2 88.2 90.1 90.5 
MUSIC            76.7 83.7 81.2 83.0 82.5 84.4 84.9 
TOYS             83.2 89.2 84.5 85.2 88.0 88.2 88.7 
VIDEO            81.5 81.5 83.7 83.2 84.5 87.0 87.4 
BABY             84.7 87.7 88.0 86.7 88.2 90.7 91.0 
MAGAZINES        89.2 87.7 92.5 92.0 92.2 92.7 93.3 
SOFTWARE         84.7 86.5 86.2 87.0 87.2 87.5 87.8 
SPORTS           81.7 84.0 85.5 87.2 85.7 86.3 86.7 
IMDB             81.7 86.2 82.5 84.7 85.5 85.7 86.3 
MR               72.7 74.5 74.7 76.0 76.7 76.8 77.1 

 

Table 2. The accuracy of the 
model trained on 15 domains and 
tested on the leave-one-out 
domain. 

LOO 
DOMAIN 

SP-
MTL 

ASP-
MTL 

UPS-
MTL 

LSTM-
X 

BOOKS            82.2 83.2 86.5 82.9 
ELECTRONICS 84.7 82.2 86.3 83.3 
DVD              85.2 85.5 86.4 84.0 
KITCHEN          85.0 83.7 86.6 82.2 
APPAREL          85.2 87.5 87.4 84.6 
CAMERA           86.7 88.2 88.3 86.1 
HEALTH           85.5 87.7 88.9 86.6 
MUSIC            80.0 82.5 86.4 81.2 
TOYS             86.2 87.0 87.2 84.3 
VIDEO            85.7 85.2 86.7 83.5 
BABY             83.5 86.5 86.6 85.4 
MAGAZINES        89.5 91.2 91.1 89.8 
SOFTWARE         87.0 85.5 87.3 85.6 
SPORTS           83.7 86.7 86.9 83.7 
IMDB             87.2 87.5 87.6 84.5 
MR               74.0 75.2 75.4 74.0 

 

 
In the second experiment (Table 2), we probe the effect of the proposed 

regularization on the generalization of the emergent shared features. In this 
experiment, we train the competing classifiers on 15 domains and test them on 
the remaining unseen domain. We also examine the viability of transfer learning 
by putting learned shared features of UPS-MTL in a single task LSTM-based 
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classifier (denoted by LSTM-X). The dataset includes 14 product review 
collections and two different movie review repositories for the task of binary 
classification similar to (Liu et al., 2017). Each category has a train/dev/ 
test/unlabeled data size of approximately 1400/200/400/2000. We compared 
our method with a single task classifier (LSTM), PS-MTL, and Adversarial 
version of that APS-MTL proposed in (Liu et al., 2017), fully shared (FS) MTL, 
and also MT-CNN (Collobert & Weston 2008) with partially shared CNN for 
different tasks. The baseline classifier is an LSTM (128 units) operating on 
GloVe embedding of the input, followed by a dense and a Softmax layer. The 
regularization weight is tuned by cross-validation (λ1=.01, λ2=.025). 

As Table 1 shows, the proposed regularization improves the performance of 
its baseline (PS-MTL) in almost all categories, and although not significant 
(p=0.06), it yields better performance compared to applying adversarial training 
on the same baseline. Adversarial training in APS-MTL aims to push out 
domain-specific features from shared space, which indirectly leads to better 
performance. However, in our proposed algorithm (UPS-MTL), the uncertainty 
regularization pushes out any features that increase global task uncertainty 
(punishes task-specific features) and, at the same time, reduces local task 
uncertainty (by encouraging each task to find better task-dependent features in 
their private space). The task-independent features in a shared layer of our 
proposed method are more generalizable compared to FS-, PS- and APS-MTL, 
as it is demonstrated by the second experiment (Table 2). Also, it is evident that 
the transferring emergent features in our model to a simple classifier without 
fine-tuning leads in an acceptable result (LSTM-X). 

Conclusion 
In this paper, we proposed a global/local task uncertainty regularization to 
disentangle task-independent and task-specific features in a private-shared MTL 
setting. Findings show that the features obtained by this measure improve the 
performance of MTL while providing a strong feature basis for transfer 
learning targeted at unseen domains. 

References 
Collobert, R.; and Weston, J. 2008. A unified architecture for natural language 

processing: Deep neural networks with multitask learning. Proc. ICML’08. 
Ganin, Y., & Lempitsky, V. 2015. Unsupervised domain adaptation by 

backpropagation. Proc. ICML’15, 1180–1189, Lille, France. 
Kendall, A.; Gal, Y.; and Cipolla, R. 2018. Multitask learning using uncertainty to weigh 

losses for scene geometry and semantics. Proc. CVPR’18, USA, 7482–7491. 
Lee, S. W., Kim, J. H., Jun, J., Ha, J. W., & Zhang, B. T. 2017. Overcoming catastrophic 

forgetting by incremental moment matching. Proc. NIPS 2017, 4652-4662, USA. 
Liu, P.; Qiu, X.; and Huang, X. 2017. Adversarial multitask learning for text 

classification. Proc. ACL’17, 1–10, Vancouver, Canada. 
Ruder, S. 2017. An overview of multitask learning in deep neural networks. arXiv. 


