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Abstract 
Cross-linguistic coarticulatory differences are experimentally challenging to disentangle. 
This paper aims to assess whether traditional locus equations constitute a suitable 
heuristic tool to highlight regional differences in coarticulation patterns. For this 
purpose, three highly similar dialects were chosen, i.e., Bari, Cagliari, and Palermo 
Italian. C-V effects were examined in CV and VC sequences (V=/a/; C=/p, t, k, f, s, 
m, n/). A two-step acoustic analysis was performed on 648 phonetically controlled 
utterances, read by 24 speakers, and sampled from the CLIPS corpus. Subsequently, 
traditional locus equations and alternative linear regressions were compared. The results 
show that locus equations do not adequately model variation of subtle dynamic 
patterns. Yet significant dialect-specific differences in coarticulation emerged fitting 
alternative linear regressions. 
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Introduction 
This paper aims to investigate whether locus equations represent a proper 
heuristic method to highlight significant cross-dialectal differences in the 
acoustics of coarticulation patterns among highly similar regional dialects of 
Italian. Coarticulation permeates speech models since its dynamics are bonded 
to the long-standing issues of variability and segmentation. Its patterns were 
held to be constrained by articulatory and aerodynamic demands, though they 
were later shown to be partly language-specific (Hardcastle & Hewlett 1999). 
Nonetheless, identifying language-specific differences is problematic, due to the 
flawed comparability of phonetic material across different languages. For this 
reason, three highly similar language varieties are examined in this study.  

Experimentally, a classic method of indirectly assessing the degree of 
consonant-vowel (C-V) coarticulation is represented by first order locus 
equations (LEs, henceforth). They also capture articulatory-acoustic 
relationships, carrying information about places of articulation – see Perillo et 
al. (2015) and Bang (2017), for reviews. Indeed, LEs are regression lines fitting 
scatterplots of vowel formant frequencies. F2 values are measured at onset 
(F2ON, y-axis) and midpoint or steady state (F2MID, x-axis) across various vowel 
contexts. Their relation is formalized as F2ON = F2MID * k + c, where k is the 
slope of the regression line (i.e., the change in F2 during the transition) and c is 
the intercept between the regression line and y-axis (i.e., F2 at the beginning of 
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the transition). Steep regression lines indicate a high degree of coarticulation, 
whereas flatter slopes hint at lower degrees of coarticulation. C-V effects and 
the steepness of LE slopes decrease from labials to alveolars, while velars 
exhibit vowel-dependent split patterns (Hardcastle & Hewlett 1999). 

Material and method 
Coarticulation patterns were compared across three highly similar regional 
dialects: Bari, Cagliari, and Palermo Italian. The extensive overlap of their 
vocabularies and phonological systems makes employing the same set of stimuli 
possible. The comparability is also enhanced in lexical neighbourhood density 
and according to the Output Constraints model (Hardcastle & Hewlett 1999). 

Read speech material was extracted from the LF subcorpus of the CLIPS 
(corpus of Italian). Four female and four male speakers per variety were 
sampled. The words in the dataset meet the following criteria: they are content 
polysyllabic paroxytones; the Vs are stressed; the Cs are singleton; the phonetic 
environment was controlled; two or three repetitions per sequence were 
collected, depending on resources. Overall, 648 CV (/pa, ta, ka, fa, sa, ma, na/) 
and VC (/at, as, an/) utterances entered the dataset (27 words * 24 speakers). 

The dataset was manually segmented, annotated, and the trajectories of /a/ 
formant frequencies were semi-automatically analysed in Praat. The data were 
statistically processed in R. Specifically, the analysis was divided into two stages: 

LEs were fitted using F2 frequencies extracted at two time points; 
F2ON/F2OFF (of CV and VC boundaries, respectively) and F2MID; language 
variety, manner, and place of articulation were implemented as additive effects; 

an additional time point was analysed, i.e., 25% or 75% of the vowel 
duration of CV and VC sequences, respectively. F1 and F3 were measured at all 
three time points. These supplementary data were used to fit a series of 
alternative linear regressions, encompassing the same additive effects as in (I). 

Finally, ANOVAs were performed to compare the models and identify the 
best solutions, which were then checked for overfitting; to measure accuracy 
and validate the results, the bootstrap resampling method was applied, through 
200 random resamples with replacement. 

Results 
The LEs plots reveal that the datapoints and regression lines are grouped by 
place of articulation (Figure 1). The intercepts of labials are lower than those of 
alveodentals, while velars have the highest intercepts. These results are in line 
with previous research findings relating LEs, degree of coarticulation, and place 
of articulation. However, if the variety variable is included, the variability 
sharply increases and prevents a straightforward detection of general patterns. 

This is evidenced in the statistical analysis, summarised in Table 1. The 
ANOVAs identified M1 as the best LE-based model of stage I, accounting for 
59% of the variation. However, M1 does not include language-specific 
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differences since it relies solely on F2MID, C place, and mode. Including the 
variety as an additive effect does not significantly improve the predictive power. 
 

 
Figure 1.  LEs fitting F2MID-F2ON scatterplots, not divided per variety. 

 

Table 1. Summary of  the best linear models. 

response F2ON (CV) F225% (CV) F1ON (CV) F1OFF (VC) 

model M1 M2 M3 M4 

explanatory variable 
F2MID F2MID F1MID F1MID 

.54*** 
(.45, .62) 

.82*** 
(.79, .86) 

.44*** 
(.38, .49) 

.69*** 
(.58, .81) 

C place 

labial 
-222*** 
(-250, -194) 

-80*** 
(-92, -69) 

30*** 
(16, 44) 

N/A 

velar 
124*** 
(83, 165) 

71*** 
(56, 87) 

5 
(-14, 24) 

N/A 

C mode 
nasal 

-82*** 
(-115, -48) 

  
-74*** 
(-104, -45) 

stop -23 (-55, 10)   -6 (-39, 27) 

variety 
CA  

-19** 
(-31, -6) 

22** 
(7, 38) 

66*** 
(35, 97) 

PA  
-15** 
(-28, -3) 

24** 
(8, 39) 

64*** 
(32, 95) 

constant 
761*** 
(633, 889) 

282*** 
(228, 336) 

301*** 
(258, 343) 

77 
(-15, 169) 

R2 (adj. R2) .59 (.58) .85 (.85) .34 (.34) .42 (.41) 

residual SE 159 66 82 107 

F-statistic 128(5, 466) *** 502(5, 466) *** 46(5, 466) *** 27(5, 186) *** 
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Nevertheless, adding the variety as an effect reveals statistically significant 
differences in all best models fitted in stage II. In particular, M2 employs F2MID 
to predict F225% and models 85% of the variation in the data, yielding the 
highest accuracy score among the regressions fitted in this study. M3 and M4 
are especially noteworthy because they harness the first formant of CV and VC 
utterances, respectively – M3 uses F1MID to predict F1ON and M4 predicts F1OFF 
through F1MID. Finally, all models shown in Table 1 were validated after 
bootstrap resampling. No signs of overfitting were found; thus, no subsequent 
adjustments were made. 

Discussion and conclusion 
This study confirms that LEs successfully model C-V effects across a variety of 
contexts, strongly depending on the place of articulation (Hardcastle & Hewlett 
1999; Perillo et al. 2015; Bang 2017). Less consistent results were obtained as 
language-specific effects were evaluated in highly similar dialects. 

In stage I, LEs failed to detect cross-dialectal differences, but they were later 
shown to be significant (stage II). Using more detailed data was crucial to avoid 
neglecting relevant sociolinguistic variation. Unlike Öhman (1966), this study 
shows that not only F2 but also F1 trajectories encode information that can be 
exploited to model regional differences in coarticulatory effects; yet no clear 
pattern emerged by relying on F3. The alternative regressions mimic the 
capability of LEs to capture variations between two time points. However, it is 
not clear whether this involves any articulatory meaning. 

These findings support previous research indicating that relevant phonetic 
information is not exclusively conveyed by few «magic moments» (Carignan et 
al. 2020: 2). Conversely, relying only on well-known simple metrics runs the risk 
of oversimplification, especially affecting time-varying phenomena. 
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